How to quantify and minimize the effects of geometric uncertainties in radiotherapy
نویسندگان
چکیده
Tilly, D. 2016. Probabilistic treatment planning based on dose coverage. How to quantify and minimize the effects of geometric uncertainties in radiotherapy. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1264. 51 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9720-0. Traditionally, uncertainties are handled by expanding the irradiated volume to ensure target dose coverage to a certain probability. The uncertainties arise from e.g. the uncertainty in positioning of the patient at every fraction, organ motion and in defining the region of interests on the acquired images. The applied margins are inherently population based and do not exploit the geometry of the individual patient. Probabilistic planning on the other hand incorporates the uncertainties directly into the treatment optimization and therefore has more degrees of freedom to tailor the dose distribution to the individual patient. The aim of this thesis is to create a framework for probabilistic evaluation and optimization based on the concept of dose coverage probabilities. Several computational challenges for this purpose are addressed in this thesis. The accuracy of the fraction by fraction accumulated dose depends directly on the accuracy of the deformable image registration (DIR). Using the simulation framework, we could quantify the requirements on the DIR to 2 mm or less for a 3% uncertainty in the target dose coverage. Probabilistic planning is computationally intensive since many hundred treatments must be simulated for sufficient statistical accuracy in the calculated treatment outcome. A fast dose calculation algorithm was developed based on the perturbation of a pre-calculated dose distribution with the local ratio of the simulated treatment’s fluence and the fluence of the precalculated dose. A speedup factor of ~1000 compared to full dose calculation was achieved with near identical dose coverage probabilities for a prostate treatment. For some body sites, such as the cervix dataset in this work, organ motion must be included for realistic treatment simulation. A statistical shape model (SSM) based on principal component analysis (PCA) provided the samples of deformation. Seven eigenmodes from the PCA was sufficient to model the dosimetric impact of the interfraction deformation. A probabilistic optimization method was developed using constructs from risk management of stock portfolios that enabled the dose planner to request a target dose coverage probability. Probabilistic optimization was for the first time applied to dataset from cervical cancer patients where the SSM provided samples of deformation. The average dose coverage probability of all patients in the dataset was within 1% of the requested.
منابع مشابه
بررسی صحیح بودن مقدار اشعه داده شده در پرتودرمانی سرطان پستان با ترمولومینسانس دوزیمتری
In vivo dosimetry seems an appropriate method for quality assurance in radiotherapy with CO-60, which can be considered as a routine program in radiotherapy centers. In this study, entrance and exit dose in tangential fields were measured in phantom for 30 breast cancer patients by using TLD in radiotherapy section of Imam Khomeini Hospital. TLD crystals were calibrated against SSDL (Secondary...
متن کاملGeometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes
Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...
متن کاملDosimetric Effects of Rotational Setup Error in Volumetric Modulated Arc Radiotherapy on Brain Tumor Patients
Introduction: This study examined the dosimetric effects based on the rotational setup error to correct patient setup errors occur during volumetric modulated arc radiotherapy (VMAT) for brain tumor patients. Material and Methods: This study included 1129 cases of cone beam computed tomography (CBCT) images obtained from 46 brain tumor patients, who experienced VMAT and used the 6DoF (degree o...
متن کاملStandard calibration of ionization chambers used in radiation therapy dosimetry and evaluation of uncertainties
Background: Absolute dosimetry of external beam radiotherapy is carried out by the use of ionization chambers. These chambers must be calibrated at a standard dosimetry laboratory before any use in clinical dosimetry. The secondary standard dosimetry laboratory of Iran (SSDL) has the duty of calibrating the ionization chambers used in radiotherapy centers in Iran. Materials and Methods...
متن کاملAssessment of Dose Calculation Accuracy of TiGRT Treatment Planning System for Physical Wedged fields in Radiotherapy
Introduction Wedge modifiers are commonly applied in external beam radiotherapy to change the dose distribution corresponding to the body contour and to obtain a uniform dose distribution within the target volume. Since the radiation dose delivered to the target must be within ±5% of the prescribed dose, accurate dose calculation by a treatment planning system (TPS) is important. The objective ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016